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INTRODUCTION

Since orthologs were first suggested by Fitch,1 several

ortholog clusters have been introduced independently

and used successfully for comparative genomics and ge-

nome annotation. One of such examples is the COG

(clusters of orthologous group) database2–4 in NCBI

(National Center for Biotechnology Information), which

is constructed from 66 complete genomes using the

gapped BLAST program.5 BLAST is a very efficient and

fast heuristic method,6–10 but it has been known that it

is often ineffective to detect the homology between evolu-

tionarily distant species.11–14 Genes with homology are

called homologs. There are two types of homologs. One

is orthologs that are genes speciated from the same

ancestor gene preserving the same function. The other is

paralogs, genes related by duplication but having differ-

ent functions.1,15

The COG database released in 20003 were constructed

from 21 complete genomes. It first identifies groups of

three proteins with best reciprocal BLAST hits, and then

performs case-by-case manual analysis to eliminate false-

positives. Unfortunately, some of the resulting clusters

include large numbers of paralogs from the same lineage.

Such clusters are not very useful for predicting functions

for newly sequenced genes because the clusters’ functional

coherence is low as many genes from the same genome are

included.
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ABSTRACT

The quality of orthologous protein clusters (OPCs) is largely

dependent on the results of the reciprocal BLAST (basic local

alignment search tool) hits among genomes. The BLAST algo-

rithm is very efficient and fast, but it is very difficult to get

optimal solution among phylogenetically distant species

because the genomes with large evolutionary distance typi-

cally have low similarity in their protein sequences. To

reduce the false positives in the OPCs, thresholding is often

employed on the BLAST scores. However, the thresholding

also eliminates large numbers of true positives as the ortho-

logs from distant species likely have low BLAST scores. To

rectify this problem, we introduce a new hybrid method com-

bining the Recursive and the Markov CLuster (MCL) algo-

rithms without using the BLAST thresholding. In the first

step, we use InParanoid to produce n(n21)/2 ortholog tables

from n genomes. After combining all the tables into one, our

clustering algorithm clusters ortholog pairs recursively in the

table. Then, our method employs MCL algorithm to compute

the clusters and refines the clusters by adjusting the inflation

factor. We tested our method using six different genomes and

evaluated the results by comparing against Kegg Orthology

(KO) OPCs, which are generated from manually curated

pathways. To quantify the accuracy of the results, we intro-

duced a new intuitive similarity measure based on our

Least-move algorithm that computes the consistency between

two OPCs. We compared the resulting OPCs with the KO

OPCs using this measure. We also evaluated the performance

of our method using InParanoid as the baseline approach.

The experimental results show that, at the inflation factor

1.3, we produced 54% more orthologs than InParanoid sacri-

ficing a little less accuracy (1.7% less) than InParanoid, and

at the factor 1.4, produced not only 15% more orthologs

than InParanoid but also a higher accuracy (1.4% more)

than InParanoid.
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Another example of OPCs is KO, originally introduced

in 199816 and recently updated.17,18 It is a database

with the ortholog group tables, which contains ortholo-

gous genes extracted from metabolic and regulatory

pathways. The ortholog groups are a curated reference

data set of orthologous relations. The clusters in KO are

with high accuracy, as they were classified according to

the known functions of proteins and they were manually

edited from the pathways that clearly show the functional

relations of proteins involved. However, KO contains

only limited sets of orthologs because of the small num-

ber of known pathways.

To address these problems, Remm et al.19 introduced

InParanoid, a fully automatic program, to detect orthologs

and inparalogs between two species. It mostly focuses on

eukaryotes, and unlike the previous approaches, the

resulting clusters include inparalogs that are the recent

paralogs sharing the same function because of the duplica-

tion happened after speciation. To reduce the number of

paralogs in the result, it uses two types of thresholds, score

cut-off and overlap cut-off, which we will explain in detail

later. MultiParanoid20 published recently have extended

InParanoid to cluster proteins from multiple proteomes.

Meanwhile, Li et al. developed OrthoMCL,21 which

generates OPCs from multiple species using MCL algo-

rithm.22 The MCL algorithm is known to be effective for

detecting protein families especially with complicated do-

main structures.23 Very recently, Chen et al. constructed

an OPC database called OrthoMCL-DB24 using the

OrthoMCL algorithm. It contains OPCs of 55 species.

Both InParanoid and OrthoMCL use thresholds to

improve the accuracy of result. InParanoid uses a score

cut-off of 50 bits and an overlap cut-off of 50%.

OrthoMCL chooses a P-value cut-off of 1e-5. Because of

this thresholding, however, many legitimate but evolutio-

narily distant orthologs (hence with low similarity) are

not detected. Nonetheless, without the thresholding, it is

very difficult to ensure the accuracy of the clusters as

false positives are increasing.

In this work, we propose a new method for construct-

ing OPCs. In the first step, our method generates n(n21)/

2 initial ortholog tables of reciprocal best hits by running

InParanoid program for each pair of n genomes. We

employ InParanoid to get the initial ortholog tables

because it is a fully automated, fast running ortholog

detection program. It then generates an augmented table

combining the initial ortholog tables and computes a set

of initial clusters by merging the gene pairs in the aug-

mented table according to their identifications(IDs). In

this step, our method uses a recursive algorithm to cluster

orthologs from the augmented tables across distant

genomes. It combines all the two-genome ortholog pairs

by recursively linking them by their protein IDs, which

leads to a set of initial clusters of multi-genome orthologs.

In the second step, for each initial cluster, it runs the MCL

algorithm to further refine it and obtain the final clusters.

Our hybrid method, combining the recursive and the

MCL algorithms, can produce much more orthologs than

previous methods, because it does not use BLAST thresh-

olding that can prematurely eliminate true positives in the

early stage of the clustering process. Instead, it refines the

initial clusters from the recursive algorithm using MCL

through adjusting the inflation factor.

A challenging problem in developing OPC algorithms

is that it is difficult to evaluate the quality of clusters as

there is no large enough curated reference ortholog data

set. MultiParanoid used a small set of manually curated

orthologs including species such as human, worm, and

fly. OrthoMCL simply compared their results against

those of InParanoid and showed that the two results are

similar. Recently, Chen et al.25 proposed a new method

for evaluating the performance of different orthology

detection strategies. To assess the accuracy of strategies,

they used a statistical technique called latent class analysis

(LCA)26 to assess the agreement and disagreement of the

results obtained from different strategies and use them to

determine the statistical confidence of the results. They

showed that both OrthoMCL and InParanoid exhibit

the best overall performance. Especially, they showed the

clusters of OrthoMCL are more consistent with the

enzyme commission (EC) assignments, concerning pro-

tein function and domain architectures, than KOG (eu-

Karyotic Orthologous Groups).4 However, the quality of

results estimated by LCA is dependent on a specific

collection of methods inspected.

To assess the accuracy of our results, we investigated

how much our results are consistent with KO that

includes diverse ortholog clusters across various distant

species. To quantify the similarity between the two

groups of OPCs, we introduced a distance measure called

least-move distance, which computes the number of

moves that genes in one OPCs have to make before the

two OPCs become identical.

METHODS

Our approach works in two steps. One is to cluster

orthologous proteins recursively using our recursive clus-

tering algorithm from the augmented ortholog table con-

sisting of the all possible n(n21)/2 tables with reciprocal

best hits derived by the InParanoid program. The second

stage is to split the initial clusters using the MCL algo-

rithm into more refined and tighter clusters. Figure 1

shows the overview of our approach.

In the first stage, we first select n genomes of our in-

terest and prepare their protein sequence sets. Then, the

n(n21)/2 tables are drawn from the InParanoid using all

possible best reciprocal BLAST hits between each pair of

proteomes. Note that in doing so we do not use any

threshold in InParanoid. These ortholog tables are com-

bined into one augmented table and initial clustering is
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performed by running the recursive clustering algorithm

over the augmented table as illustrated in Figure 2.

In the second stage, score matrices are first constructed

from the initial clusters produced in the previous step as

explained in Clusters and score matrices Section. The

score matrices are transformed later into Markov matri-

ces to simulate random walks on a graph. Then, the Mar-

kov clustering is executed to split the initial clusters into

more consistent ones using the MCL algorithm. Finally,

the terminal ortholog clusters are produced.

A recursive clustering algorithm

The COG method2 detects triangles formed from pro-

tein lines (pairs) with reciprocal best hits among

genomes and merges triangles with a common side of a

protein line (pair) through biological analysis without an

arbitrary threshold. The InParanoid algorithm,19 with a

score cut-off of 50 bits and an overlap cut-off of 50%,

decides a main protein pair of a and b, fixed as a center

point, from which additional inparalogs are clustered.

MultiParanoid20 searches and merges gene pairs with an

identical gene in ortholog tables drawn from three

genomes of human, worm, and fly. The MultiParanoid

extends InParanoid to multiple genomes by combining

the results from InParanoid over multiple pairs of

genomes and thus the overall quality of the result is de-

pendent on that of InParanoid.20

In the previous work,27 we proposed an automatic

method that clusters orthologous proteins from n(n 2

1)/2 ortholog tables generated from n genomes using

InParanoid. But the algorithm is somewhat complex and

difficult to understand. A simple and clear method is

proposed here. This algorithm starts with the augmented

table combininig n(n 2 1)/2 ortholog tables, and recur-

sively detects and merges gene pairs with identical genes.

Both the algorithms correspond to a single-linkage

method. Figure 2 shows the algorithm.

Clusters and score matrices

Recall that we did not use the thresholds in the first

step to generate the initial clusters. Our recursive algo-

rithm starts from all reciprocal best hits without pruning.

We could perhaps have improved the accuracy of the ini-

tial clusters by enforcing the thresholds. However, it

could generate a lot of false-negatives. To avoid this

problem, we include all results in the first step and refine

the results in the second step using the MCL algorithm

through adjusting its inflation factor.

MCL algorithm is a network flow based graph parti-

tioning algorithm. The key idea of it22 is to simulate

flow within a graph such that the flow is encouraged

when the current is strong, but discouraged when the

current is weak. The inflation factor is used for both

strengthening and weakening the current, and thus the

cluster granularity can be controlled by the inflation fac-

tor. Large inflation factor generates large numbers of

small clusters while small inflation factor generates small

numbers of large clusters.

To apply the MCL algorithm, the initial clusters are

transformed into score matrix as shown in Figure 3.

Unlike OrthoMCL,21 we make use of diagonal scores

that are self-reciprocal best hit scores computed against

themselves. A node with a high return weight (i.e., a

large diagonal score) will likely be an attractor with a

positive return probability. It has less effect on cluster

granularity than the inflation factor, but needs also to be

considered as it influences the quality of the final clusters

generated. We observed in our experiment that more reli-

able clusters were generated with diagonal scores than

without. OrthoMCL also normalized the weights to min-

imize the impact of inparalogs. We do not consider nor-

malization since we do not include inparalogs in our

result.

We obtain a group of protein clusters after running

MCL with our score matrix. As done in COG, we only

include the clusters having three or more proteins in the

final result. Now, let us consider an instance to show

how the graph in Figure 3 is partitioned after applying

MCL. As shown in Table I, 11 OPC groups are produced

according to varying inflation factors from 1.0 to 2.0,

which are represented as OPC10 through OPC20. Each

OPC group has clusters such as if10oc1 in case of

OPC10, and as if14oc1 and if14oc2 in case of OPC14. At

inflation factor 1.4, the graph is split into two clusters.

The if14oc1 cluster includes three proteins denoted

SCE_a, SPO_b, and TMA_e, where the capital letters rep-

resent the names of species and the lowercase letters indi-

cate proteins. At inflation factor 1.8, another split occurs

resulting three clusters in OPC18 as shown in Table I.

Figure 1
The overall steps of our approach.

Clustering Orthologous Proteins
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Figure 2
Our recursive clustering algorithm to cluster orthologous proteins from the augmented table.
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The concept of similarity

To be able to compare two different clustering meth-

ods, we need to be able to quantify the similarity

between the two clustering results. OrthoMCL used the

number of ‘‘coherent’’ clusters between the two results.

They define the coherence as one cluster in one result set

is a subset of a cluster in the other result set.

Let us consider the cases shown in Figure 4. Figure
4(a) shows two clustering results, K and G. K consists of
four clusters, K1–K4, while G has only one cluster, G1.
According to OrthoMCL, the number of the coherent
clusters between the two groups is four because every
cluster in K is a subset of G1. On the other hand, the
two groups in Figure 4(b) represent zero coherence as no
cluster is subset of any other. Intuitively, however, both

Figure 3
The graph on the top represents the reciprocal best hits among proteins and the table below shows the corresponding score matrix.

Table I
An Example to Show How the Graph in Figure 3 is Partitioned After Applying the MCL Algorithm

OPC10 OPC11 OPC12 OPC13 OPC14 OPC15 OPC16 OPC17 OPC18 OPC19 OPC20

if10oc1 if11oc1 if12oc1 if13oc1 if14oc1 if15oc1 if16oc1 if17oc1 if18oc1 if19oc1 if20oc1

SCE_a SCE_a SCE_a SCE_a SCE_a SCE_a SCE_a SCE_a SCE_a SCE_a SCE_a
SPO_b SPO_b SPO_b SPO_b SPO_b SPO_b SPO_b SPO_b SPO_b SPO_b SPO_b
SYN_c SYN_c SYN_c SYN_c TMA_e TMA_e TMA_e TMA_e TMA_e TMA_e TMA_e
SCE_a1 SCE_a1 SCE_a1 SCE_a1

ECU_d ECU_d ECU_d ECU_d if14oc2 if15oc2 if16oc2 if17oc2 if18oc2 if19oc2 if20oc2

TMA_e TMA_e TMA_e TMA_e SYN_c SYN_c SYN_c SYN_c SYN_c SYN_c SYN_c
AAE_f AAE_f AAE_f AAE_f SCE_a1 SCE_a1 SCE_a1 SCE_a1 ECU_d ECU_d ECU_d

ECU_d ECU_d ECU_d ECU_d AAE_f AAE_f AAE_f
AAE_f AAE_f AAE_f AAE_f

if18oc3 if19oc3 if20oc3

SCE_a1 SCE_a1 SCE_a1

Clustering Orthologous Proteins
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Figure 4(a,b) seem to have low similarity and we cannot

say clusters in Figure 4(a) is much more coherent than

those in Figure 4(b).

Owing to these problems, we, therefore, propose the

new concept of similarity between two groups of clusters.

The idea is that we view the difference between two

groups as the least number of proteins that need to move

from one cluster to another within one group to make

the group identical to the other. For instance, in Figure

4(a), three genes need to move to make the two groups

identical, e.g., genes 2, 3, and 4 to cluster K1. The simi-

larity can be computed as S 5 1 2 M/P, where M is the

least number of proteins moved and P is the total num-

ber of proteins. According to this formula, the similar-

ities for Figure 4(a,b) are 1/4 and 1/2, respectively. A

detailed explanation of the algorithm to compute the

least number of moves is given in the following section.

The least-move algorithm

Consider the instance in Figure 5. Using this example,

we will briefly explain how our algorithm finds the least

number of proteins to be moved. First, the algorithm finds

the cluster pair that shares the most number of proteins.

In our example, it is K1 and G1 pair as they share three

proteins. Second, it identifies the disjoint members

between the two clusters, K1 and G1. Protein 8 in K1 and

protein 3 in G1 are identified. We check the two proteins

as the ones to be moved. The algorithm then moves to the

next pair that shares the next most proteins (in our exam-

ple, K2 and G2), and repeats the previous two steps with

them. Protein 4 is the only disjoint member between the

two. The algorithm checks it as the third protein to be

moved and completes as there is no more cluster to be

processed left in G. As the result, the least number of pro-

teins to be moved is three and the similarity score for Fig-

ure 5 is 5/8. Figure 6 shows the details of this algorithm.

RESULTS

We used six different genomes in our test, three eukar-

yotes and three bacteria, as shown in Table II. Figure 7

compares the number of orthologs detected by InParanoid

(IP) and our method with varying inflation factors. As

explained in Clusters and score matrices Section, we only

considered the clusters containing three or more proteins;

that is, we disregarded the clusters with only one or two

proteins. The result from InParanoid is shown in the far

left. InParanoid found 4706 orthologs from the six

genomes in total. Our method found far more numbers of

orthologs especially when small inflation factors are used.

As the inflation factor increased, the number of proteins

gradually decreased. Our method found more than twice

as many proteins as InParanoid when the inflation factor

of 1.2 or less is used. With 1.3, it found 7248 proteins and

with 1.4, 5415 proteins, which means roughly 54 and 15%

increase from InParanoid. The total number of proteins in

the six genomes is 19,468 (5,869 SCE; 5,045 SPO; 1,996

ECU; 1,529 AAE; 1,858 TMA; 3,171 SYN).

For estimating the accuracy of the OPC results, we com-

pared our clustering results against the KO clusters.* KO

clusters are constructed manually from known pathways

and contain only experimentally validated orthologs. The

number of orthologs identified in KO OPCs is small as the

number of known pathways is limited. In order to be able

to compare the results from InParanoid and our method,

we extract from the results only the proteins that overlap

with KO and use them to compute the accuracy. Figure 8

shows the number of proteins that overlap with KO OPCs

for each case shown in Figure 7. InParanoid produced 2153

orthologs overlapping with KO while our method pro-

duced 2321 and 2674 orthologs with inflation factors 1.4

and 1.3 respectively. Note that orthologs from ECU and

SCE appear not significant in the graph because KO OPCs

do not contain many proteins from the two genomes.

Figure 9 shows the accuracy of the clustering results

compared against KO OPCs. We used the similarity mea-

sure introduced in The Concept of Similarity Section to

show how well the resulting OPCs match to KO OPCs. KO

OPCs are overlapping clusters (i.e., one protein can belong

to more than one clusters) while OPCs from InParanoid

Figure 5
An example for illustrating the least-move algorithm.

Figure 4
Comparing clustering results: Two groups of clusters, Ks and Gs, are obtained

from different OPCs. *The KO dataset (genes_ko.list) was obtained from ftp://ftp.genome.jp/pub/kegg/

linkdb/genes/.
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and our method are disjoint clusters. To be able to com-

pare them, we transformed KO OPCs to a disjoint one by

removing duplicate proteins. As shown in Figure 9, InPar-

anoid produced the result about 88% matching with KO

OPCs. On the other hand, our method produced results

that are not quite similar to KO OPCs when small inflation

factors are used. However, as the inflation factor increases,

the accuracy improves significantly. In fact, our OPCs, at

inflation factor 1.3, include 54% more orthologs than

Figure 6
The least-move procedure to calculate the similarity between two groups of clusters.

Table II
The Species Used in Our Experiments

SCE Saccharomyces cervisiae (baker's yeast) Eukaryota
SPO Schizosaccharomyces pombe (fission yeast) Eukaryota
ECU Encephalitozoon cuniculi Eukaryota
AAE Aquifex aeolicus VF5(NC_000918) Bacteria
TMA Thermotoga maritime MSB8(NC_000853) Bacteria
SYN Synechocystis PCC6803(NC_000911) Bacteria

Clustering Orthologous Proteins
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InParanoid (i.e., 7248 vs. 4706) while sacrificing a little less

accuracy (1.7% less) than InParanoid. In case of the factor

1.4, our OPCs not only produced 15% more orthologs

than InParanoid (i.e., 5415 vs. 4706) but also achieved a

better accuracy (1.4% better) than InParanoid.

Figures 10 and 11 show the distribution of clusters, for

each of the six genomes, with respect to the numbers of

proteins from the same genome in the same clusters. We

compared InParanoid and our method with the inflation

factors of 1.3 and 1.4. For example, the tall bar in the

front left corner (for SCE genome) represents the propor-

tions of clusters where only one protein from SCE is

included. Similarly, the next bar (at x 5 2, y 5 SCE) rep-

resents the proportion of clusters where two SCE proteins

are included. For example, InParanoid in Figure 10 has

70% of clusters (826 out of 1187) including only one SCE

protein in them. Whereas our method with inflation fac-

tor 1.3 and 1.4 has 77 and 78% of clusters respectively as

shown in Figure 11. For the case where two proteins from

the SCE genome are clustered together, InParanoid has

8.4% of clusters and our method with 1.3 and 1.4 has

5.4% and 2.5% respectively. It is desirable to have smaller

numbers of proteins from the same genome in each clus-

ter as possible because multiple proteins from the same

genome that are clustered together can be paralogs. As the

inflation factor increased, our method produced increas-

ingly better clusters in terms of the number of clusters

having one protein from one genome.

Figure 7
The number of orthologs detected by InParanoid (IP) and our method with

varying inflation factors. The total number of proteins in the six genomes is

19,468 (5,869 SCE; 5,045 SPO; 1,996 ECU; 1,529 AAE; 1,858 TMA; 3,171

SYN).

Figure 8
The number of proteins that overlap with KO OPCs for each case shown in

Figure 7.

Figure 9
The similarity between KO and InParanoid (IP) and our OPCs with varying

inflation factors.

Figure 10
The distribution of ortholog clusters for each of six genomes with respect to the

number of proteins that are coming from the same genome in the same clusters.

The graph shows the distribution of clusters from InParanoid.
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Figure 12 shows the distribution of orthologs found in

the generated OPCs considering only the clusters that are

identical to that of KO OPCs (top) and the numbers of

such clusters produced (bottom). With the inflation fac-

tor of 1.3, our method produced 1817 orthologs in 896

clusters that are identical to KO OPCs while InParanoid

produced 1555 proteins in 681 such clusters. All the

datasets used in our experiments and the ortholog clus-

ters our method produced are available in http://dblab.

chungbuk.ac.kr/�sskim04/.

CONCLUSION

The quality of ortholog clusters is largely dependent

on the results of the reciprocal BLAST hits among

genomes. The BLAST algorithm is very efficient and fast,

but it is very difficult to get optimal solution among dis-

tant phylogenetic species because the genomes with large

evolutionary distance typically have low similarity in

their protein sequences. To reduce the false positives in

the OPCs, thresholding is often employed on the BLAST

score. However, the thresholding eliminates large num-

bers of true positives as the orthologs from distant spe-

cies likely have low BLAST scores.

To rectify this problem, we introduced a new OPC

method that does not use BLAST thresholding. Our

method first constructs an augmented table combining

all possible pairwise InParanoid results and build an ini-

tial clusters by running our recursive clustering algo-

rithm. It then employs MCL algorithm to further refine

the clusters through adjusting the inflation factor. Our

aim is to find more numbers of orthologs from distant

species while not sacrificing the accuracy of the result.

We tested our method using six different genomes and

compared the result to KO OPCs. KO OPCs are gener-

ated from manually curated known pathways. We also

compared our results with InParanoid. In the previous

section, we showed that our method performs signifi-

cantly better than InParanoid especially in terms of the

number of orthologs produced while maintaining the ac-

curacy in the comparable level. In addition, we intro-

duced a new intuitive similarity measure based on our

least-move algorithm for quantifying the similarity

Figure 11
The graphs on the top and bottom show the distribution of clusters from our

OPCs with inflation factors of 1.3 and 1.4, respectively.

Figure 12
The graph on the top shows the distribution of orthologs considering only the

clusters that are identical to KO OPCs. The bottom shows the numbers of such

clusters.
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between the OPCs. In the future, we plan to build an

OPC database extending the clusters generated from our

method to include more diverse species.
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