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Abstract

Gene expression data can be associated with various clinical outcomes. In particular,
these data can be of importance in discovering survival-associated genes for medical ap-
plications. As alternatives to traditional statistical methods, sophisticated methods and
software programs have been developed to overcome the high-dimensional difficulty of mi-
croarray data. Nevertheless, new algorithms and software programs are needed to include
practical functions such as the discovery of multiple sets of survival-associated genes and
the incorporation of risk factors, and to use in the R environment which many statisti-
cians are familiar with. For survival modeling with microarray data, we have developed
a software program (called rbsurv) which can be used conveniently and interactively in
the R environment. This program selects survival-associated genes based on the partial
likelihood of the Cox model and separates training and validation sets of samples for
robustness. It can discover multiple sets of genes by iterative forward selection rather
than one large set of genes. It can also allow adjustment for risk factors in microarray
survival modeling. This software package, the rbsurv package, can be used to discover
survival-associated genes with microarray data conveniently.

Keywords: microarray data, survival data, likelihood, robustness, R.

1. Introduction

Gene expression can be associated with clinical outcomes such as survival. Genes associated
with clinical outcomes can play a role as biomarkers for medical uses. Efforts to discover such
biomarker genes have been made by many investigators. For these purposes, the development
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of microrray technology presents a challenge to quantitative researchers as well as biological
researchers.

To discover survival-associated genes, statistical methods for survival analysis such as the Cox
model, the log-rank test, and the Wald test have been applied to various disease studies with
microarray experiments (Rosenwald et al. 2002; Beer et al. 2002; Wigle et al. 2002; Jenssen
et al. 2002; Freije et al. 2004; Sanchez-Carbayo et al. 2006; Mandruzzato et al. 2006; Matsui
2006). Score or Mantel tests were also employed (Shannon et al. 2002; Goeman et al. 2005;
Jung et al. 2005). The L1 or L2 penalized estimation for the Cox model or the transformed
model were applied to improve performance (Bair and Tibshirani 2004; Gui and Li 2005; Xu
et al. 2005) and partial least squares and LASSO were utilized for data reduction (Nguyen
and Rocke 2002; Park et al. 2002). Bayesian approaches were also applied (Tadesse et al.
2005; Sha et al. 2006).

Though there exist such various algorithms, we wanted to develop a new software program that
we could use conveniently and interactively in the R environment (R Development Core Team
2008) because R is a widely used statistical package and practical functions for microarray
survival analysis need to be included. We utilized the partial likelihood of the Cox model
which has been the basis for many of the aforementioned methods. Our algorithm is simple
and straight-forward, but its functions such as the generation of multiple gene models and the
incorporation of risk factors are practical. For robustness, it also selects survival-associated
genes by separating training and validation sets of samples. This is because such a cross-
validation technique is essential in predictive modeling for data with large variability. The
program employs forward selection to generate a series of gene models and later select an
optimal model. Furthermore, iterative runs after putting aside the previously selected genes
can discover the masked genes that may be missed by the forward selection. This software
package, the rbsurv package, is available from the Bioconductor website at http://www.
bioconductor.org/ (Gentleman et al. 2004), which provides many bioinformatics packages
used in the R environment (R Development Core Team 2008). A programming example can
be found in the package’s vignette.

2. Implementation

2.1. Robust likelihood-based survival modeling

Suppose the data consist of G genes and N samples, and each sample has its observed (sur-
vival or censoring) time and censoring status. Thus, it consists of the triple (Yj , δj ,Xj),
j = 1, . . . , N , where Yj and δj are observed time and censoring status (usually, 1=died,
0=censored) for the j-th sample respectively, and Xj = (X1j , X2j , . . . , XKj) is the j-th vector
of the expression values for K genes (K < N and K ⊂ G). Let Y(1) < Y(2) < . . . < Y(D)

denote the ordered times with D distinct values and X(i)k be the k-th gene associated
with the sample corresponding to Y(i). The Cox proportional hazards model (Cox 1972)
is h(y|X1, X2, . . . , XK) = h0(y) exp(

∑K
k=1 βkXk), where h(y|X1, X2, . . . , XK) is the hazard

rate at time y for a sample with risk vector (X1, X2, . . . , XK), h0(y) is an arbitrary baseline
hazard rate, and βk is the coefficient for the k-th gene. The partial likelihood for the Cox
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http://www.bioconductor.org/


Journal of Statistical Software 3

model is
D∑

i=1

K∑
k=1

βkX(i)k −
D∑

i=1

log

 ∑
j∈R(Y(i))

exp(
K∑

k=1

βkXjk)

 , (1)

where R(Y(i)) is the set of all samples that are still under study at a time just prior to
Y(i). Maximizing the likelihood provides the maximum likelihood estimates (MLE) of the
coefficients, so denote the MLEs by β̂1, β̂2, . . . , β̂k. Then, as a goodness-of-fit, we can use the
fitted partial likelihood:

loglik =
D∑

i=1

K∑
k=1

β̂kX(i)k −
D∑

i=1

log

 ∑
j∈R(Y(i))

exp(
K∑

k=1

β̂kXjk)

 . (2)

The negative log-likelihood (-loglik) is greater than zero, so the smaller -loglik the model
better. For robustness, however, the model should be evaluated by independent validation
samples rather than the training samples used for fitting the model such as

loglik∗ =
D∗∑
i=1

K∑
k=1

β̂0
kX
∗
(i)k −

D∗∑
i=1

log

 ∑
j∈R(Y ∗

(i)
)

exp(
K∑

k=1

β̂0
kX
∗
jk)

 , (3)

where ∗ indicate the use of the validation samples and the estimates β̂0
1 , β̂

0
2 , . . . , β̂

0
k are obtained

by the training samples. For robust gene selection, we thus use training samples for model
fitting and validation samples for model validation. This cross-validation is repeated many
times independently. In other words, we fit the Cox model with a gene (or genes) and select
a gene (or genes) maximizing mean loglik∗ (i.e., minimizing the mean negative loglik∗).

2.2. Robust gene and model selections

Independent validation samples are usually unavailable. Therefore, the given samples are
randomly divided into training and validation sets of samples. To avoid a bias arising from
a partition of samples, such partitions are repeated many times and the measurements are
averaged. By robust likelihood-based modeling with repeated random partitions, we select
the best predictive gene g(1), and then the next best predictive gene g(2) retaining the first
selected gene g(1). This forward gene selection generates a series of gene predictive models:
g(1), g(1) + g(2), g(1) + g(2) + g(3), . . .. This can be continued until fitting is impossible because
of the lack of samples. It is also important to select an optimal model among a series of
gene predictive models. In microarray studies, sufficient samples for double-partitioning as
well as independent samples are often unavailable because of the limited supplies of biological
samples or the high cost of the experiments. Double-partitioning means that the samples are
partitioned into training and validation sets for selecting predictive genes and a test set for
selecting an optimal model. Thus, we may have to reuse samples used for gene selection. For
this, it is essential to employ an error measure that can prevent over-fitting. For instance, if we
test the series of gene models with the samples with loglik, we always select the largest model.
To avoid this over-fitting, we employ the Akaike information criterion (AIC), −2loglik + ak,
where k is the number of parameters in the model and a is some pre-specified constant
(usually, a = 2). We select a model with the smallest AIC. Then we can select an optimal
robust model, which may not be the largest model selected by using loglik. We discuss the
demonstration in the results and discussion section.
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2.3. Multiple optimal sets of genes

As described above, an optimal model consists of several survival-associated genes which can
be selected and then utilized. However, other genes may also be associated with survival, but
not the members of the model because of the masking effect. For instance, suppose there exist
two genes similarly associated with survival. If one gene is selected, the other gene may not
help improve the model so as not to be selected. Nevertheless, the other survival-associated
gene may play an important role. Thus, it is more meaningful to select and provide multiple
optimal sets of genes rather than a single optimal set of genes, as indicated in Ein-Dor et al.
(Ein-Dor et al. 2005). Thus, we put aside the genes in the first model. We then construct
another optimal model. Again, we can construct a third optimal model after putting aside the
genes in the first and second optimal models. In this manner, we can make multiple optimal
models. This iterative procedure can also mitigate the limitation of forward gene selection,
which highly depends on the previously selected genes. The number of optimal models can
be determined in the practical point of view. The cost and time of confirmation experiments
in each lab can be factors to determine it. Among the selected models, the first optimal one
might be the best statistically, but it does not mean that it is the best biologically.

2.4. Adjusting for risk factors

Survival may be associated with some risk factors, such as age and a disease stage rather than
certain genes. Survival modeling without an adjustment of risk factors may result in finding
the genes associated with other risk factors rather than survival. Therefore, we can improve
the ability to discover truly survival-associated genes by modeling genes after adjusting for
certain risk factors. Thus, we allow adjustment for risk factors in the above robust likelihood-
based survival modeling.

2.5. Reducing computing time

Forward gene selection by repeatedly swapping training and validation samples substantially
inflates computing time for modeling high-throughput data such as microarray gene expression
data with tens of thousands of genes. Therefore, it is crucial to reduce computing time
without loss of meaningful information in a practical view. It is a fundamental step to filter
out meaningless probe sets meaning in the microarray experiments. For instance, probe sets
are kept if a coefficient of variation is greater than 0.2 and at least 10% of samples have an
expression intensity greater than 500 (Freije et al. 2004). However, a lot of probe sets are
often left after initial filtering, so it is wasting computing time to evaluate all of them because
many of them may not be associated with survival. Thus, univariate survival modeling and
evaluating with whole samples can reduce the number of candidate genes without losing
important genes. This univariate survival pre-selection is adopted into our software program.

We can also consider a biological approach if we can obtain other data sets from related
studies. For instance, suppose we have a microarray data set with drug A-treated or untreated
samples, in addition to a microarray data set for cancer patients with survival. Examining
the differential expression under two conditions of the experiments provides Drug A-induced
genes. This handful of Drug A-induced genes can be used for robust survival modeling.
Finally the selected genes are Drug A-induced as well as associated with survival.
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2.6. Algorithm for modeling microarray data with survivals

We now summarize the algorithm described above. Suppose the data consists of expression
values X for G genes and N samples. Each sample has its observed (survival or censoring)
time Y and censoring status δ. We assume that expression values are already normalized
and transformed in appropriate ways. Prior gene selection such as univariate survival mod-
eling and/or biological pre-selection can also be performed if necessary. Univariate survival
modeling can be performed in our software program. Our algorithm is summarized as follows.

1. Randomly divide the samples into the training set with N(1 − p) samples and the
validation set with Np samples (e.g., p = 1/3). Fit a gene to the training set of samples
and obtain the parameter estimate β̂0

i for the gene. Then evaluate loglik∗ with the
parameter estimate, β̂0

i , and the validation set of samples, (Y ∗i , δ
∗
i , X

∗
i ). Perform this

evaluation for each gene.

2. Repeat the above procedure B times (e.g., B = 100), thus obtaining B loglik∗s for each
gene. Then select the best gene with the smallest mean negative loglik∗ (or the largest
mean loglik∗). The best gene is the most survival-associated one that is selected by the
robust likelihood-based approach.

3. Let g(1) be the selected best gene in the previous step. Adjusting for g(1), find the next
best gene by repeating the previous two steps. In other words, evaluate g(1) + gj for
every j and select an optimal two-gene model, g(1) + g(2).

4. Continue this forward gene selection procedure until fitting is impossible because of the
lack of samples, resulting in a series of K models M1 = g(1), M2 = g(1) + g(2), . . .,
MK−1 = g(1) + g(2) + . . .+ g(K−1), MK = g(1) + g(2) + . . .+ g(K).

5. Compute AICs for all the K candidate models,M1,M2, . . . ,MK , and select an optimal
model with the smallest AIC.

6. Put aside the genes in the optimal model in the previous step. Then repeat steps 2-
6. This can be repeated several times sequentially (e.g, 3 times), generating multiple
optimal models.

In addition, suppose that p risk factors, Z1, Z2, . . . , Zp, are available for each sample. Then
risk factors can be included in every modeling of the previous algorithm.

2.7. Software

The above algorithm was implemented into a R package (called rbsurv), employing two other
R packages Biobase (Gentleman et al. 2004) and survival (Therneau and Lumley 2008). This
rbsurv package can be used conveniently and interactively in the R environment (R Develop-
ment Core Team 2008). For instance, the package can be run as follows.

R> library("rbsurv")
R> fit <- rbsurv(time = time, status = status, x = x, z = z, alpha = 0.05,
+ gene.ID = NULL, method = "efron", max.n.genes = 100, n.iter = 100,
+ n.fold = 3, n.seq = 3, seed = 1234)
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Argument Description
time a vector for survival times
status a vector for survival status, 0=censored, 1=event
x a matrix for expression values (genes in rows, samples in columns)
z a matrix for risk factors
alpha a significance level for evaluating risk factors
gene.ID a vector for gene IDs; if NULL, row numbers are assigned.
method a character string specifying the method for tie handling.
n.iter the number of iterations for gene selection
n.fold the number of partitions of samples
n.seq the number of sequential runs or multiple models
seed a seed for sample partitioning
max.n.genes the maximum number of genes considered

Table 1: Argument description.

The required arguments time and status are vectors for survival times and survival status
(0=censored, 1=event) and x is a matrix for expression values (genes in rows, samples in
columns). The optional argument z is a matrix for risk factors. To include only the significant
risk factors, a significance level less than 1 is given to alpha, e.g., alpha = 0.05. In addition,
there are several controlled arguments. gene.ID is a vector for gene IDs; if NULL, row numbers
are assigned. method is a character string specifying the method for tie handling. One of
efron, breslow, exact can be chosen. If there are no tied death times all the methods are
equivalent. In the algorithm of Section 2.6, n.fold is the number of partitions of samples
in step 1, n.iter is the number of iterations for gene selection in step 2, and n.seq is
the number of sequential runs (or multiple models) in step 6. seed is a seed for sample
partitioning. max.n.genes is the maximum number of genes considered. As described in
Section 2.5, if the number of the input genes is greater than the given maximum number, it is
reduced by fitting individual Cox models and selecting the genes with the smallest p-values.
The input arguments of rbsurv are summarized in Table 1. The major output fit$model
contains survival-associated gene models with gene IDs, nlogliks, and AICs. The genes in the
optimal model with the smallest AIC are marked with asterisks (*).

The open-source R statistical package is available from the Comprehensive R Archive Net-
work at http://CRAN.R-project.org/ and our developed program rbsurv is available at the
Bioconductor website (http://www.bioconductor.org/). A programming example can be
found in the accompanying vignette.

3. Examples

We now describe a demonstration of our developed algorithm with a microarray data set
for patients with gliomas. This real data set consists of gene expression from 85 patients
with gliomas (Freije et al. 2004). For this study, Affymetrix U133A and U133B chips were
used and dCHIP was used to convert data files (.CEL) into expression values with median
intensity normalization. As suggested in the paper, we first selected about 8,000 genes with a
coefficient of variation greater than 0.2 and at least 10% of the samples having an expression

http://CRAN.R-project.org/
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Figure 1: Negative log-likelihood and AIC (1st run). These plots show negative log-
likelihoods and AICs against genes. Two plots at the bottom utilized standardized negative
log-likelihoods and standardized AICs, which were divided by those with no gene, respectively.
The asterisk (*) indicates the smallest value.

intensity greater than 500. We ran our developed software program (called rbsurv) to discover
survival-associated genes with microarray data for the 85 patients with gliomas.

3.1. Negative log-likelihoods and AICs for two iterative runs

Figure 1 shows that the negative log-likelihoods (nloglik) always decrease as the number
of genes increases. Thus, the largest model is always selected because it has the smallest
nloglik. However, it could be over-fitted, i.e, consisting of too many genes. In contrast,
AICs tend to decrease for a while and then increase with the number of genes. This implies
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Probe set ID Gene title Gene symbol
200909 s at ribosomal protein, large, P2 RPLP2
201105 at lectin, galactoside−binding, soluble, 1 (galectin 1) LGALS1
201186 at low density lipoprotein receptor−related protein LRPAP1
201318 s at myosin regulatory light chain MRCL3 MRLC2
202345 s at fatty acid binding protein 5 (psoriasis−associated) LOC653327
203026 at zinc finger and BTB domain containing 5 ZBTB5
203303 at dynein, light chain, Tctex−type 3 DYNLT3
203554 x at pituitary tumor−transforming 1 PTTG1
209191 at tubulin, beta 6 TUBB6
211935 at ADP−ribosylation factor−like 6 interacting protein ARL6IP
211937 at eukaryotic translation initiation factor 4B EIF4B
212473 s at microtubule associated monoxygenase MICAL2
213447 at imprinted in Prader−Willi syndrome IPW
215947 s at hypothetical protein FLJ14668 FLJ14668
217733 s at thymosin, beta 10 TMSB10
217969 at chromosome 11 open reading frame2 C11orf2
221249 s at family with sequence similarity 117, member A FAM117A
221623 at brevican BCAN
222586 s at oxysterol binding protein−like 11 OSBPL11
222820 at trinucleotide repeat containing 6C TNRC6C
225864 at family with sequence similarity 84, member B FAM84B
226623 at phytanoyl−CoA 2−hydroxylase interacting protein−like PHYHIPL
226981 at Myeloid/lymphoid or mixed−lineage leukemia MLL
227506 at solute carrier family 16, member 9 SLC16A9

Table 2: Gene model 1.

Probe set ID Gene title Gene symbol
201141 at glycoprotein (transmembrane) nmb GPNMB
202182 at GCN5 general control of amino-acid synthesis 5-like 2 GCN5L2
202409 at insulin-like growth factor 2 (somatomedin A) IGF2
207721 x at histidine triad nucleotide binding protein 1 HINT1
209180 at Rab geranylgeranyltransferase, beta subunit RABGGTB
209395 at chitinase 3-like 1 (cartilage glycoprotein−39) CHI3L1
211938 at eukaryotic translation initiation factor 4B EIF4B
213479 at neuronal pentraxin II NPTX2
215998 at Sidekick homolog 1 (chicken) SDK1
218009 s at protein regulator of cytokinesis 1 PRC1
220136 s at crystallin, beta A2 CRYBA2
220152 at chromosome 10 open reading frame 95 C10orf95
227082 at MRNA; cDNA DKFZp586K1922
229982 at glutamine and serine rich 1 QSER1

Table 3: Gene model 2.
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Figure 2: Negative log-likelihood and AIC (2nd run). These plots show negative log-
likelihoods and AICs against genes. Two plots at the bottom utilized standardized negative
log-likelihoods and standardized AICs, which were divided by those with no gene, respectively.
The asterisk (*) indicates the smallest value.

that the optimal gene model is not necessarily very large. In this run, the 24-gene model
was selected (Table 2). Among the genes in the model, BCAN(Brevican)/ BEHAB(Brain
enriched hyaluronan binding) is one of the members of the lectican family protein. It comprises
extracellular matrix of the brain with hyaluronan and tenascin-R (Gary et al. 2000; Yamaguchi
2000). Although its role is not completely understood, BCAN/ BEHAB is considered to
play an important role in structural maintenance of the brain’s extracellular matrix (Nakada
et al. 2005). In normal adult brain, the expression level of BEHAB/brevican is very low,
however, its expression is increased in glial origin tumors, including glioblastoma (Jaworski
et al. 1996; Held-Feindt et al. 2006). In rat model studies, over-expression of BCAN/ BEHAB
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Figure 3: Negative log-likelihood and AIC (with age). These plots show standardized negative
log-likelihoods and standardized AICs with age, which were divided by those with no gene,
respectively. The asterisk (*) indicates the smallest value.

was reported to be associated with tumor invasion. Rats having intracranial grafts of BCAN/
BEHAB-transfected glioma cell line demonstrated worse prognosis (Jaworski et al. 1996; Nutt
et al. 2001). Taken these together, over-expression of BCAN/ BEHAB may be associated with
aggressiveness and worse survival rate in patients with glioblastoma. We re-ran rbsurv after
putting to one side the genes in the selected model at the first run. Note that these iterative
runs can be conducted automatically according to a user’s choice in rbsurv. In a similar way,
we obtained another model containing 14 survival-associated genes (Figure 2 and Table 3).
The nlogliks and AICs in Figure 2 had the trends similar to those in Figure 1.
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Probe set ID Gene title Gene symbol
202182 at GCN5 general control of amino-acid synthesis 5-like 2 GCN5L2
202442 at adaptor-related protein complex 3, sigma 1 subunit AP3S1
205139 s at uronyl-2-sulfotransferase UST
208691 at transferrin receptor (p90, CD71) TFRC
209507 at replication protein A3, 14kDa RPA3
212468 at sperm associated antigen 9 SPAG9
213447 at imprinted in Prader-Willi syndrome IPW
213479 at neuronal pentraxin II NPTX2
217733 s at thymosin, beta 10 TMSB10
218009 s at protein regulator of cytokinesis 1 PRC1
220136 s at crystallin, beta A2 CRYBA2
221249 s at family with sequence similarity 117, member A FAM117A
227082 at cDNA DKFZp586K1922 —
227506 at solute carrier family 16, member 9 SLC16A9
229982 at glutamine and serine rich 1 QSER1

Table 4: Gene model 3

Probe set ID Gene title Gene symbol
201186 at low density lipoprotein receptor-related protein

associated protein 1
LRPAP1

202409 at insulin-like growth factor 2 (somatomedin A) INS-IGF2
203026 at zinc finger and BTB domain containing 5 ZBTB5
203303 at dynein, light chain, Tctex-type 3 DYNLT3
203554 x at pituitary tumor-transforming 1 PTTG1
204900 x at Sin3A-associated protein, 30kDa SAP30
205480 s at UDP-glucose pyrophosphorylase 2 UGP2
211762 s at karyopherin alpha 2 (RAG cohort 1, importin

alpha 1)
LOC643995

211938 at eukaryotic translation initiation factor 4B EIF4B
215998 at Sidekick homolog 1 (chicken) SDK1
218407 x at neuron derived neurotrophic factor NENF
221623 at brevican BCAN
224850 at ATPase family, AAA domain containing 1 ATAD1
225864 at family with sequence similarity 84, member B FAM84B
232125 at CDNA FLJ34585 fis, clone KIDNE2008758 —
242134 at Transcribed locus —

Table 5: Gene model 4
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Figure 4: Kaplan-Meier survival curves for high- and low-risk groups. The plots for four
sequential runs were drawn by the test samples for the high- and low-risk groups from each
optimal gene model.

3.2. Negative log-likelihoods and AICs with adjusting for the covariates

Next, we accounted for potential risk factors of age and gender in this survival modeling.
All the risk factors can be incorporated into modeling. Gender was not significant at a 5%
significance level. Thus, we let rbsurv include age only and generate a series of gene models
with nlogliks decreasing and AICs decreasing after increasing as the number of genes increases,
as shown in Figure 3. The trends are the same as those in Figures 1 and 2. The selected genes
in the two iterative runs are displayed in Tables 4 and 5. In this case, BCAN was included in
the second run.
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Figure 5: Kaplan-Meier survival curves for high- and low-risk groups with covariate age.
The plots for four sequential runs were drawn by the test samples with the high- and low-risk
groups from each optimal gene model adjusted for age.

3.3. Evaluation of prediction accuracy with test samples

To see prediction accuracy, we randomly divided 85 samples into two sets (75% for training
and validating and 25% for testing). Reserving the test set (22 samples), we ran rbsurv
with the training and validation set (63 samples) resulting in an optimal gene model. We
computed risk scores with the 22 test samples for the selected genes. The risk scores were
divided into high-risk and low-risk groups by the median. We did this four times iteratively.
Figure 4 shows that the two groups for each run differ significantly. Only in the third run,
their difference was not large. Including the significant risk factors, we ran rbsurv in the same
way and found that the high-risk and low-risk groups differed significantly in all runs. Thus,
inclusion of the significant risk factors helps to improve prediction accuracy (Figure 5).
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4. Conclusions

For survival modeling with microarray gene expression data, we have developed a robust
likelihood-based algorithm and software program called rbsurv. This can be used conveniently
and interactively in the R environment. Using rbsurv, we can discover multiple sets of survival-
associated genes while adjusting for risk factors.
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