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Abstract—There have been a number of papers on meta-
analysis of microarray datasets. Most of these papers have
focused on genes (i.e., differential expression of genes or co-
expression of gene pairs) to arrive at a prognostic signature.
However, there has been no concerted meta-analysis of expression
data in relation to ontologies and pathways. The contribution of
this paper is two-fold. First, it uses expression data to create
global cancer maps for GO, KEGG and PFAM. These maps
reveal hotspots of activation/de-activation. This would be the
largest meta-analysis of microarray data in terms of number
of datasets and types of cancers represented. Second, in order
to prove the concept, we perform an in-depth analysis of the
biological processes, pathways and proteins associated with breast
cancer. This analysis reveals evidence of a strong link between
the GO/KEGG/PFAM hotspots and breast cancer.

I. I NTRODUCTION

Over the last few years, there has been an explosion in
the number of cancer microarray datasets available in public
repositories. However, the number of research papers using
multiple datasets in their analysis have been limited [1], [2].
While some papers have attempted to match significantly
expressed genes to the Gene Ontology and KEGG pathways,
there haven’t been many papers that have mapped multiple
cancer datasets to GO or KEGG. Mapping and mining multiple
microarray datasets may yield insights that were not possible
by using just one, or at best, a few datasets.

The results presented in this paper should be viewed
with the knowledge that the fold changes linked to ’over-
expression’ and ’under-expression’ are open to biological in-
terpretation. The meta-analysis also suffers from the drawback
that the datasets have been taken from diverse platforms and
they contain diverse number of genes, and that the datasets
themselves have been normalized separately. Nevertheless, we
believe that the global cancer map presented here presents
some salient pathways that are unique to specific cancers, and
also some pathways that are common across cancer types.
We have created global cancer maps for Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and Protein Families database (PFAM), although
here we have just presented the global map for GO.

Fig. 1. Global cancer map of significant Gene Ontology (GO) Terms. Each
row represents a unique GO term and each column represents a microarray
dataset. For a dataset, a red cell represents a GO term found to be significant
in relation to the set of over-expressed genes. Similarly, a green cell represents
a GO term found to be significant in relation to the set of under-expressed
genes

II. M ETHODOLOGY

A total of 67 datasets containing 4,063 cancer tissue samples
were downloaded from Gene Expression Omnibus (GEO) and
Stanford Microarray Database (SMD). These datasets cover a
wide variety of cancer tumors across many microarray plat-
forms. Similar to [1] we scaled the datasets after determining
the log2 values of affymetrix datasets (after setting to 16,000
any value that was more than 16,000 and setting to 10 any
value that was less than 10). For spotted cDNA datasets, we
used the log2 ratio between the measured sample and the
control sample. Any gene that had more than 25% values
missing was discarded from further analysis. A gene was
considered to be over-expressed in a dataset if it showed
greater than two-fold increase (i.e., a log2 value greater than 1)
in expression levels in more than 80% samples in that dataset.



Fig. 2. Breast cancer map of significant Gene Ontology (GO) Terms. Each
row represents a unique GO term and each column represents a microarray
dataset. For a dataset, a red cell represents a GO term found to be significant
in relation to the set of over-expressed genes. Similarly, a green cell represents
a GO term found to be significant in relation to the set of under-expressed
genes

Similarly, a gene was considered to be under-expressed in a
dataset if it showed greater than two-fold decrease (i.e., a log2
value less than -1) in expression levels in more than 80% tumor
samples in the dataset. We next calculate the hypergeometric
probability of this set of over (under) expressed genes being
associated with a particular GO/KEGG/PFAM term.

For the set of over (or under) expressed genes in a dataset,
we evaluate if there are any GO/KEGG/PFAM terms that
are over-represented, than would be expected by chance.
We evaluate this probability by using the hypergeometric
distribution of the genes. The probability of a gene set of sizeS
containingx genes belonging to a particular GO/KEGG/PFAM
term, given that the reference dataset ofN genes has a total of
A genes belonging to that particular GO/KEGG/PFAM term
is:

Pr{X = x|N, A, S} =

(
A

x

)(
N − A

S − x

)
(

N

S

)

whereX is a random variable representing the number of
over (or under) expressed genes, that are associated with a
particular GO/KEGG/PFAM term. A GO/KEGG/PFAM term
is consideredsignificantonly if it has a p-value less than 0.01.

III. G LOBAL CANCER MAPS FORGO,KEGGAND PFAM

The global cancer map showing over and under-expressed
GO terms, derived from 67 microarray datasets and 14 can-
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Fig. 3. Cancer map (on GO) for breast cancer datasets. GO Terms associated
with over-expressed genes are shown as red nodes, and those associated with
under-expressed genes are shown as green nodes.

TABLE I
TOP SIGNIFICANTKEGG TERMS FOR BREAST CANCER DATASETS

S.No. KEGG ID KEGG Term

1 00592 alpha-Linolenic acid metabolism

2 03050 Proteasome

3 04950 Maturity onset diabetes of the young

4 01040 Polyunsaturated fatty acid biosynthesis

5 00062 Fatty acid elongation in mitochondria

TABLE II
TOP SIGNIFICANTPFAM TERMS FOR BREAST CANCER DATASETS

S.No. PFAM ID PFAM Term

1 PF07654 Immunoglobulin C1-set domain

2 PF06758 Repeat of unknown function (DUF1220)

3 PF00572 Ribosomal protein L13

4 PF00240 Ubiquitin family

5 PF00244 14-3-3 protein

cer types, is shown in Figure 1. The figure shows distinct
hotspots of activation/de-activation for several cancer types.
Each cancer type appears to have some set of GO terms that
are affected by the over (or under) expressed genes. These can
be seen most distinctly for liver, leukemia and breast cancer.

We next focus our analysis on significant GO/KEGG/PFAM
terms that have been revealed by using only the breast cancer
datasets, and show that there is strong evidence to link these
specific GO/KEGG/PFAM terms to breast cancer.

IV. D ISCUSSION

We created a breast cancer GO map using significant GO
terms obtained from breast cancer datasets (Figure 2). We



then mapped the significant GO terms associated with over
(and under) expressed genes onto the GO tree, as shown in
Figure 3. It can be seen that the over (and under) expressed
genes in breast cancer target specific GO terms that are distinct
from each other. Similarly, we created a breast cancer KEGG
map using significant KEGG pathways obtained from breast
cancer datasets. We listed the KEGG terms associated with
over (and under) expressed genes (p value less than 0.01).
Some of the most significant KEGG pathways obtained are
shown in Table I. To determine the biological significance of
these KEGG terms (Table I), we searched existing literature
for links between the KEGG term and breast cancer. Results
indicate that there is strong evidence for links between the
KEGG terms considered significant from the meta-analysis
(Table I) and breast cancer. Links between breast cancer and
alpha-Linolenic acid metabolismhave been reported by [3].
Similarly, associations between breast cancer andProteasome
[4]–[6], Maturity onset diabetes[7], [8], Polyunsaturated fatty
acid biosynthesis[9] and Fatty acid elongation in mitochon-
dria [10] have been reported.

The most significant PFAM terms associated with over (and
under) expressed genes in breast cancer datasets are shown
in Table II. Existing evidence [11]–[17] validates a strong
connection between the protein families found by our analysis
and cancer.

V. CONCLUSION

We have used a very large number of cancer datasets of
various platforms to create global cancer maps for GO, KEGG
and PFAM terms. We have focused on breast cancer and
have validated that the significant GO/KEGG/PFAM terms
from our analysis have biological significance and are strongly
linked to cancer. Our future work will focus on three areas.
First, to conduct similar analysis for leukemia and liver
cancer, for which adequate numbers of microarray datasets are
available. Second, to analyze the similarites (and differences)
in pathways between these cancers. Third, to incorporate
phenotype information into the analysis. This would focus on
metastasis (or survival) across cancer types to determine if
there are specific pathways associated with particular clinical
phenotypes.
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